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THE METHOD OF ZONES FOR THE CALCULATION
OF TEMPERATURE DISTRIBUTION

SUMMARY  --

The method of zones is an improved method for obtaining
approximate solutions to certain partisl differentisl equations. Its
application to heet transfer problems is discussed in detaill. Within
a zone the temperature 1s assumed to vary paraebolically with the space
coordinates, and mean temperatures throughout the volume and over the
boundaries are celculated. The higher order of spproximation of the method
permites a complicated system to be subdivided inte fewer parts then is

necessary when conventional methods are used.

The heat flow equation is integrated over the volume of the zone
to glve an instantaneous heat belance equation which involveu the fluxes
over the boundariss of the zone and the rate of change of the mean temper-
ature of the zone. Approximste formulas, which are based on the parabolic
assunption, are derived expressing the‘fluxes in terms of the mean tempef— '
atures of the zone and its.boundaries. These formules sre worked out for
zones of varioué shapes. The boundary conditions are also integrated to
obtain equations for relating the temperatures in zones that are Joined

together.

Arthue B.Aittle Ine.
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The instantaneous hest balance equations are integrated numeri-
celly with respect to time by meané of a gerieral linear two-point integra-
tion formuls involving an integration parameter. Rules for choosing this
parameter to insure stability and accuracy are given. A rule is also

given for selecting the time increment.

Three simple examples are given ﬁo illustrate the application
and accuracy of the method of zones. A number of criteria which enable
zone sizes to be chosen préperly in practical spplications are developed.
These criteris are derived by comparing caleulations mede ﬁy the method

of zones with exact results in simple cases.

The modified Gauss~Seidel procedure for solving the ﬁifference
equations at each time step is briefly discussed, and experience with tae
convergence of this procedure in the present connection is ;eviewed,

Finelly, checking procedures, based on the principles of reci-
procity and the conservation of energy, are 1n£roduced. These provide an
initial check on the ccisistency of the input data and a running check on

the solution of the problsm.

Avthur B0 istle, Ine,
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INTRODUCTION

The method of zones was developed for caleculating the temperature

distributions in the components of camplicated artificisl satellites.

Conventional numerical methods(l’e) for determining the temper-
ature dilstribution in a component, such as a rod or a plate, involve the
establishment of & sultebly fine mesh in the object which defines points
at which temperatures are to be evaluated. The calculations are then made
by replacing the differential equation by a set of difference equations.
This 1s equivalent to meking the assumption that the temperature distribg-

tion between points of the mesh is linear in the space coordinates.

In the zone method, on the other hand, we divide the component
into zones of guitable size and cssume that the temperature within the
zone varies paraholically . ith the space coordinates. Furthermorc we
evaluate mean teﬂperat"res averaged over the volume and over the boundaries
of the zone instead of temperatures at particular mesh points. This method
lends 1tself very naturally to the solution of boundary value problems and
the higher o: approximation used permits the size of our zones to be
larger than the mesh size used in conventional methods. We will present
rules to help to determine the subdivision of the system into zones of
appropriate size. The use of larger zones greatly decreases the labor of
calculating thermal conductances and view areas for radjation, and also

decreases the magnitude of the machine calculations.

Avthur D.Nistle. Ine.



We will show later that the use of mean terperatures leads to
greater accurucy In problems 1nvol§ing radlation end in transient problems.
The use of mean temperatures and the parabélic aspumption permlt the ex-
plicit calculation of fluxes over woundaries which encbles the interaction

between zones o be accurately accounted for.

The method of zones is not restricted to problems in heat flow
alone, but could be used in obteining epproximate solutions to meny other
partial differential equations, such as the biharmonic equation of the

theory of elasticity.

INSTANTANEOUS HEAT BALANCE

The heat flow eguation in a zone 1s
-KVQT-p+opg{~=o . (1)

where K 1s the tﬁermal conductivity, watts em™t (deg K)"l which we
agsume to be éonstant.
T is the temperature, deg K.
p 1s the power input per unit volume, watts c;"3.
Cp is the heat capacity per unit volume, joule em™3 (deg K)’l.
t 18 the time, seconds.

In order to obtain solutions of Equation 1 suitedle boundary conditions

and an initial temperature distribution must be prescribed. In general

Avtgue D Xittle, Fne,
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the boundary condition is given as a relstionship between the temperature

and flux at each poiat of the boundary

£(T,K %1]3) = 0 ‘ (2)

where n represents the outward direcled normal end f i an arbitrary func-
tion. For example, in the case of a free boundary interchanging radiatlon

with an environment &t temperaturc To’ the boundary condivion becomes

oar . b L
K o+ 607" - eoT " = 0 (3)

vhers € is the emlsslvity of the surface snd ¢ ls the Stefan-Boltzmann
constant, watts cn™? (deg K)'h. On the other hand, when two bodies are

in contact, thes share the common boundery conditions

T-T =

(4)
(5)

n
o

}
(e}

wherc the prime refers to the second body end gq is the heat genereted at
the interface, watts cm~2. Equations 4 end 5 merely require continuity of

the temperavure and the heat flux over the boundary.

In order to obtaln the overall heat balance for a zone, we inte~
grate Equation 1 cver the volume, Y, of the zone. On applying Geuns'
theoren to firet term of Equation, and interchanging the order of differen-

tlation and integration in the last term, we’find

uxcbg‘gfnasufpdv+cp§;fmv=0 (6)

Asthur D Aittle Ine.
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where & 1s the surface of the zone. It will be noticed that.

dev;v'.cm (7)

v

vhere Th is the mean temperature over the volume. Since VTm does not vary
with the space coordinates, the pertial derivative with respect to time in

Equetion 1 veccaer’ 8 totel derivetive. Also

/‘p av = P (8)

v

where P iz the total power dissipated in the volume, watts. If we divide
the boundary of the zone into a number of faces Sl, SQ, S3 «ssy the first

term of Equaetion € is seen to be

_KJJ.&-{&S=Q1+%+Q3+“. (9)
8
where 0 = -K j' %El as, ete. : (10)
8y :

. Thus Ql, QE’ Q3, «eey are the total outward fluxes crossixg-slp 82’ 83, very

in watts. On substituting the expressions (7), {8), and (9) into Equa-

tion 6 we find

, : - ary | ‘
ir~Q2+Q3+...~P+CbVa¢E~r=O .‘ (ll)v

The heat balance edu&tion (11) 18 one of the basic equaticns of thelmqthod

o

of wonec. This equatlon iy exact, and 1t should baupointéd out that if,

ﬂrfﬁut I Hitle Ine.
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for exemple, the center temperature of the zone were used iun place of the

mean temperature, en error would, in general, be incurred.

Next we obtain the heat balance for & particular face of & zone
by integrating the boundary conditions over a surface, say Sl" For exsmple,

Equation 3 uny he integrated to give

Q + €0 t]‘ Tk ds, - SleoTou = 0. (:2)

On account of the non-linear character of Equation 12, we make the

substitution

T=T +8

where T, 1s the meen temperature of S, and € is the devietion therefrom.

1 1
Then the integral in (12) becomes
/
tas, =gt (1 (—--)as+...\) (13)
1 171 S, p
3 X 3 l
1 1 .

The term in 6 is exactly zero because of the definition of T

as the mean temperature of 8

"1
S A = L
Tl-slfl'dsl_ml»rslfedsl (14)
, CH 8, .

The higher order terms in Equation 13 can be neglected if

6 8y as. <« L (15)
'S1J () %

8y

Avthuy B Kittle, Ine.
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In the method of zones, this term is neg;ected so that Equaetion 12 becomes

) L L
- Q + €0, - el * = 0 (16)

end Inequality 15 provides one criterion for choosing the zone size.

If the face is rectangular and 6 varies linesvly over Sl’ then

£ [ e S oex) (17)
5, J ‘T ¥ T T T
5 1

so that, for example, if 8 pnex is 20% of Tl in degrees Kelvin, a W% error

in the radiation flux will be made by neglecting the term in 62.

Another exemple of the integration of zone boundary conditicns

is obtained from Equations 4 and 5. These become
Q+Q +Q =0 (18)

-1y =0 (19)

where Q 1s the total heat generated over Sl
’1‘l 1s the .mean temperatire over Sl’ as before

Ql is the total heat flux crossing S, out of the first body,

1
as defined in Equation 10

Q) 18 the total heat flux crossing S, out of the second body.

1

QArthue D.Aigele, Ine.
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DIFFERENCE EQUATIONS (SPACE)

In order to convert Equations 11, 16, 18, and 19 into difference

eguations in the space coordinates, it is necessary to express Ql’ Qa, Q3,

" ete., in terms of the mean temperatures Tm’ Tl, T2, T3, ete. To do this

we assume that the temperature can be instantaneously approximated by & .

particular function of the space coordinates.
Rectilinesr Solid

In the case of a rectilinear solid of sldes &, b, and ¢ as

illustrated in Figure 1, we assume *hat
e 2 2 13K
T(x,y,2,6) = £ I I aidk(t) xy'z (20)
1=0 j=0 k=0
It will be noted that T(x,y,z,t) is a quadratic function of each of the
space variables considered separately and that the coefficients are, in

general, functions of the time. Thus, Equation 20 can be written in the

equlivalent forms

T(,3,208) = £(9y25t) + X2y (¥,2,8) + X £y(,2,8) (21)
T(x,¥,2,8) = 8 (%,2,t) + yg,(x,2,8) + Y& (x,2,t) . (22)
(x,¥,2,t) = ho(x:Y.et) + Zhl(x,y:'t) + zeha(x,y,'p) (23)

Arvthur D.Xittle, Ine.
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As shown in Figure 1, Ql aﬁnd Q2 aere the total outward fluxes
leaving the surfaces normal to the x-axis. The temperatures Tl and T2 are
the mean temperatures of these faces, and Tm is the mean over the whole
volume. The expressions for Ql and Q2 in terms of T Te. and '.Em can now

be found by the use of Equation 21.. First we calculate Ql and Q2 fz;om

squation 10
b ¢
= Kff (% dydz = KbcF, (t) (2k)
Jo Yo X=0 .
where b o .
Fl(t)‘i%ff £,(y,2,%) dydz (25)
o Y

b ¢ ‘
m (4
Q= - _x\/;j‘: (&-)x:a dydz = - Kbc[Fl(t) + .—.'aFa(t)] (26)

Fp(t) = ff £,(y,2,t) dydz | C o (eT)

Next we compute Tl and 'ra from Equation 1L

vhere

b ¢
mlsslg f f 7(0,5,2,%) &yiz = F (+) (28)
0 Yo .
where . -
F () = &= ffr(y,m) dydz ' - (29)
ff Na,y,2,t) dyaz = F(t) + aFl(t) + a° Fp(t) ~(30)

Zrthug'm.lmla.iné.
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FIGURE 1. RECTILINEAR SOLID: MEAN TEMPERATURES AND BOUNDARY FLUXES.
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Finally ve £ind T from Equation 7

T - = ff T(x,¥,2,t) dxdydz = F(t)+~ ('o)+3 F(t)  (31)

We now use the expressions for Tl’ Té, and Ti to eliminate the

functions F, and F, from Equations 2k and 26 to find

q, = 22 (61 - hmi - 21,) (32)

Similar equations can be written down for the total heat fluxes crossing
the two other pairs of faces of the rectilinear solid., These simple ex-
pressions for the fluxes can now be substituted into the basic heat
balence Equation 11 1o yleld an ordinary differential equation in the

mean temperatures.

m’" (121 - 61, - 61,) + X2 (1om . 61 - 6m,) + X m’ (123, - 67, - 6T¢)
ar_
- P + (pade a-E— =0 ’ (34)

where T3, Tk’ TS’ and T6 are the average temperatures over the other faces.
" 'The expressions for Qi can also be substituted into the boundary conditions,
such as those given iﬁ Equations 16 and 18. If, for example, face 1 of the
recti;inear sélid is conductively Joined to snother rectilineer solid, the

boundary condition becomes

Avthue D.Xittle Ine,
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Equations of this type will be referred to as

Suppose also that face 2 is exposged

13

74) = 0 (35)

Jjoining equations.

to sunlight at normal

incidence. Then the boundary condition becomes

~« beeoT b

Kbe
- (6T, -k, - o1 5

l’)

+ beos = 0 (36)

where o is the solar absorptivity and s is the solar constant, watts cm’e.

remaining faces. The six boundary equations,

Four other analogous boundary equations can be written down for the four

together with the zone heat

balence Equation 34, mske up the seven equations needed to determine the

seven unknown t..._ ~otures associated with the zone.

Thin Rectangular Flate

We may now specialize the general case of a rectilinear solid

to the case of a thin rectangular plste. Suppose that the dimension c

becomes small enough so that the temperature gradient in the z-direction

can be neglected. Then the face temperatures

equal to Tm and the quantity

Kab
5 (lETh - 6T

5 = 6Tg)

approaches indeterminacy as ¢ tends to zero.

T. and TB become nearly ~

5

This term must uherefore be

Avthue B ULittle Ine.
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replaced by its limiting value as determined by the boundary couditions.
If the surfaces of the plate are emitting and receiving radiation, the zone

heat belance Equation 34 becomes

I-%—"— (12'13m - 6‘1‘1 - 6'.1'2) + -K%‘?- (12'1.'m - 6m3 - 6Th) + eabeo'rml‘
ar
..PS-P6-P+Q')abca-£-=O (37)

where P5 and P6 are the powers absorbed by the faces of the plate. In
this case boundary conditions need only be written for faces 1, 2, 3, and
4 since T5 and Ty have been elimineted.

Rod

Finally, Equation 37 may be specialized to the case bf a rod.
In this case only the end temperatures and the mean temperature need to

be considered and the heat balance equation becomes

KA | i aﬁu
5 (12T - 61, - 6T,) + pleoT, " - P+ CpAL gt = O - (38)

where A 18 the cross sectional area of the rod
£ is the length of the rod

p 1s the perimeter of the rod.
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Annulay Cylinder

We consider next the annular cylinder shown in Figure 2. We
fivst restriet the discusselon to the case in which there is no azimuthal
temperature gradient. In order to obtein the zone formulas for the four
outward heat fluxes crossing the faces,‘we assume that the temperature

can be represented sufficiently accurately by
2,2 2 2
T™ryz) = (A+ Bz + C2°)r" + (D+ Ez + F2°)r + G + Hz + J2 (39)
where the coefficients A, B, (, etc.,, are functions of time.

By methods simlilar to those employed in analyzing the recti-

linear solid,; we find that

Qﬁ%"’*“:&i*'s'i‘m-%iza Ty “3}?:2"’3‘2) (40)
G = SR (61, - 23y, - Dode ) (41)
Q3 = m;“—i‘fl (6’I‘m - ufr3 - 21'“) (42)
Q, = ’Sﬂ———)-bej‘ o (6r, - km, - om,) (43)°

where Ql is the flux leaving the imner face
QE is the flux leaving the outer face
Q3 is the flux leaving the upper end
Qh 1¢ the flux leaving the lower end
a is the inner redius
h 1s the outer radius

2 18 the helght.

Arthur D Xitele, Bue,
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FIGURE 2. ANNUIAR CYLINDER: DIM RSIONS AND
NUMBERING OF FACES,

Zethur D Ristle Ine.
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These exprezsions are to be substituted into the zone heet balence
Equation 11 and the boundary conditions in the same manner as before. If
the ratio a/v approaches unity, the coefficicnts of the temperatures in

Equations 4O end 41 epproech the values 6, -4, -2 as they should.

Tu case the inner radius is zero, the coefficlents D, E, and F
in Equation 39 must be zero for the temperature to be regular av the origin.

In this case Q,1 vanishes and we obtain the expression

Q, = BmKE(T, - T,) (k)

gootor of Amnnuler Cylinder

the sector of on annular cylinder is illustrated in ¥iguve 3.
The usual correspondence betwsan the face numbers shown and the subsuripto
will be euployed in the dlzecussion thet follows., We will now consider
gradients in the »; 8, and z divections and wzsume that the Lemperature

distritation is
T™r,8,2,%) = A+ Br cosg + Cr sing + Dr® cos2e + Er° (b5) ~

whera the gosfficients A, B, ¢, ete., are functions of t and quudratic
funetions of z. Inclusion of further items in Bguation 45, such se a

n ! )
term in r° s8in2o, leads to inconsistencies when the fluxes Qﬁ and Q6 ure

calaulated,

Arthur 0. Xittle Ine,



ISR/ 2R e ot T et L o F et e e W et g re

18

N~

/4’ “’,,\‘w""—i‘”a- “"N“'m...‘.\\\ .
e ) A =
?i // ’/f Pl f\,\\{m @ \\ oy \\\\\ 6
, ‘ S,
- | : ? \ \
F e s A
=y \aq 5 °

(A
4
&
4

day X A‘ . '_ ’
. éﬁ" 3:5‘.:. .mﬁa O /SR it rak
e

2N

&

FIGURE 3. BRCTOR OF ARNULAR CYLINDER: DIMENSIONS AND NUMBERING OF FACES.

PO a. ..

o

et~

o £

e Ge D

Beibur B W juledng, |
x\ - ' ot T

' - [P . K Y I R R ]
Rl I U S D o oo 0ot v
kA .



I e e :‘ i Mt 3

sy dm Gl =N N O BAEN  GER

_.m_,«ﬁ

§

19

On account of the cylindrical coordinates, a weighted averege

has to be. taken in caleulating the mean temperatures T5 and T6' For

exemple,

£ b
2 3
P A rI(r,=,2) drda (46)
) [ s

Unless this definition of averaging is used, the average face Lemperatures

T

5 and T6 will not apprcach Tm as ¢ tends to zero.

The calculation of Q5 and Q6 is straightforwerd but lengthy so

we merely quote the results here

& =Kt 2y ~ o)z - (B )T - (v - BT+ ofmy + T} (W)

=Xt by -odn, - (Br)g - & - ) vl v} ()

where
an G fia e St ALy 5} ()
p-3 (-1—4;:;—-51239-)(10—1:5:? | (50)
7= sin: fi:d,cosct (22 ; :2) (51)

It will be noted that & and y tend to infinity as ¢ tends to the root of

tand

©
L}

which is slightly less than %g. Therefore a sector including an angle

much more than g should be subdivided azimuthally into more than one zone.

Avthur D Litele. Ine.
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The fluxes leaving the other faces are given by formules

essantially the same as those obtained for the complete annular cylinder.

o= g (o, - B2 - B2 (52)
g 0 =m2b (6T 5b+3aT _'o+3e,,1,') (53)
2 bP+a 2 Db+a 1
A Q - & b (6x, - kry - 21) (54)
ﬂ 2 2
Q= We=e) (6n . um, - 2m)) (55
E In case the inner radiua 1s zero, as when a circular zone is subdivided
l azimuthally, then the coefficients in Xquation 52 are zero and 'l‘l is inde-
terminate, In order tq obtain en equation for Tl’ the regularity condition
II ‘

at the origin is invoked. This leads to the condition that

\

vhere the summation is taken over the subdivisions of the eireculer zone.

DIFFERENCE EQUATIONS (TIME)
So rar we have integrated Equation 1 with respect to the space
variables in order %o, obtain equations of the types (36) and (37) which
are difference equations in the space coordinates and maybe ordinary dife

ferential equations in tinme, These equations have the general form

Avthur D Nistle, ¥ne,
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?Cid TJ+§A1J0'TJ - Py (t) # M — =0 (57)
where TJ is & mean temperature, deg K

C1J is a weighted thermal conductance, watts (deg K)'l
Aij is a view area, cm2
Il(t) is a power, waits

M, is a thermal mass, joules (deg K)-l

It 1s to be noted that Equation 57 typifies both joining or
boundary equations end zone heat balance equations. In Joining equations,
the thermal mass is usuelly zero. We have discussed in detall the calcu-

iution of the weighted conductances ¢y

(1)

5 The view areas AiJ may be obtained
by standard means.

We may now integrate Equatlon 57 with respect to time from t to

t + h, where h 1s & small increment in time.,

We find

t+h t+h . t+h -
?Cidf TJ dt+§.AiJ cf 'I‘J at-f Pi(t) at
t t %

+ M, [‘I‘i(‘t + h) - Ti(t)] =0 (58)

In order to obtain approximete expressions for the integraln of Td and TJu,

we use the general linear two-point integration formuls:

7

t+h ) ‘
f £(t) dt = h[(l -a) 2(t) + et + h)] (59)
t

Avthur D Aitske Ine,
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where £ is a function of the time and @ is any number lying between zero
and one. Tne choice of the quentity &, which we call the integration
parameter, influences the accuracy and stability of the numerical solution
of the set of difference equations that hes been derived.

Equation 58 becomes

h{;: 013[(1 - a)7,(¢) . omd('t +h)] + ?Aif (1 - a)'rd“(t) + arjh(t + h)]}
t+h
-f PJ(t) at + M, (t +b) - Ti(tfl = 0. . (60)
t .

Equation 60 is one of & set of non-linear simultaneous difference equations.

This set of equations can be solved for Ti(t + h) vhen the values Ti(t) are

glven.

In order to investigate the factors which determine the optimum
value of the integration parameter o, we will compare solutions ﬁf Equa-
tion 60 with solutions of Equation 57. In order to present this analysis
as simply as possible, we investigate the conductive cooling of s lumped
theimal mess M with an initlal temperature To connected by a conductance

C to a sink at zero degrees. I the temperature 1s T at time t, Equation

57 bgccmes
or+uEao Y
The exact solution is
2o ot (62)

Zvthue D, Nittle. Inc.
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where T

1]

3 - (63)

‘e eorresponding difference equation is
nef(1 - a)(t) + ar(t + n)] + M[E(t + b) - (4)] = O (64)

The sclution to Equation 64 is
1-(1-aR

(65)
1+al

T(nh) = T,

-

The maximun discrepsncy between the values of T calculated from
(62) and (65) is dependent on O and the ratio h/7 as shown in Figures 4
and 5. The error is given as a percentage of T o’ The time at which the

neximum error occurs 1s

t=h forh>7%

=T for h<*7

[ d
]

Stebility

It will be seen from Equation 65 that 1f the quantity

1-(1»04)%

h
l+a?

(66)

becomes greater than unity in magnitude, the temperature T(nh) will tend
to intinity instead of zerc. This happens when

h 2

B> 2, a<k (67)

e
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and never for o > -232 Thus values of & greater than % always lead to
stab? ' solutions. It is to be noted that the cholces of &= 0O, %, and 1
lead tc the methods of Euler, Crank and Nicholson, and lLeasonen,

(2)

respectively.

In the case of & joining equetion which does not contain e
term in %%) the integration procedure followed still converts the equation

into a difference equation. If the joining equation is of the form

M(t) = C(GTm - th - 2:?2) + c'(61'1;1 - lurl - amé) =0

as in'Equation 35, for example, the numerically integrated equation is
h(l « a)AQ(t) + ha A{t + h) = O. (68)

This has the solution

n
2=2) m(o) ~ (69)

M(nh) = (

If M(0) 18 not exactly zZero, or rounding error.creeps‘in at sume stage,
the quantity AA(nh) will tend to imfinity unless « z %. In order to secure
damping of AQ, the integration psremeter is always chosen to be greater
than one ﬁalf.

Selection of the Integration Parameter

In order to simplify the diescussion of problems involving many
| g

zonesg; we assume the terms in Td can ve linesrized, Then the entire set

Avthur D.3ittle, Ine.
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of differential equations (57) cei be written in matrix notation as

4T
Cr+Mg-=P-R (70)
where C ie a matrix of counductences, including radiative conductances

T i8 0 _vector whose elements eare the mean temperatures

M 18 a diagonal matrix of the thermal masses

P 18 a vector whose elements are the power inputs

R is & vector of the radiatiocn powers which are the constant
terms obtained in the linearization process.

The solution to Equation 70 is
T=FE+ at) (71)

vhere F 1s a matrix of constants depending on the initial conditions
E is a vector whose components are enf'/"rk
G 18 a vector representing the particulay integrel
'rk is & time constant.

k
C - %M equal to zero

The time constants 7, are found by setting the determinant of the matrix

fe - 2ul=o. (12)

The finite difference equation corresponding to Egquation 70 ls

t+h
ne[(1 - a) 2(t) + am(t + b))+ Mt + n) - ()] =f P & - hR
t

(13)

Arthur B Xietle Ine,
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The solution to Equation T3 is
T=FB+ Kt) {74)
vhere F ig-the same matrix introduced in Hquetlon Ti
B 1s a vector with components (f)k)n ‘
H is a vector representing the particulsr sum.
The quanﬂties ‘elr are found by solving the equation
l1-8 =
le - sr=asmyMl=0 (75)
Comparison of Equations 75 and T2 shows that
%‘J “ hil T;szoa ) (76)
¥ A %
or
1 e (3 -0)
By = — (77)
l+0 - '
k

If the quantities :CP- vary over a wide range, then it may be seen from
k

Figure L that ‘a value of/(x of about 0.87 minimizes the maximum percentsage
~-nh/7.

k

dlscrepancy between e and (ﬁk)n over all values of %*. If the

k
quantities -,-?- vary over a small range, however, a smaller value of O gives
k

the minimum error. Figure 6 shows the optimum value of « as a function of

the maximum 7?».

k

Avthur D.AiteleIne,
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FIGURE 6., THE OPTIMUM VALUS OF THE INTEGRATION PARAMETER AS A
FUNCTION OF THE RATIC OF TIME INCREMENT TO SMALLESY
TIME CONSTANT.
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Galection of ths Time Increment

e DS
—

Tt is shown in Figure 4 that the error introduced by the

quadreture in tiwme 18 weduced by wmeking % smpll., However, the time incre-

= 582

o

i .

3 ment h aust not he made too smwll because if & small error € is made at

¥ ) sach step in solving the difference eguations for T(t + h), this error may
§

b g% be highly wegnified. To show this most simply we revert to the case of &
% ga single lumped mass., After we introduce the error ¢, Equation 65 becomes
g = + ¢ §

y g 7(h) TP+ e

3
4 2

j T(2h) = T B + (1 + Be (18)
. (nh) & T 8"+ 7=

—Z

; We now substitute for B from Equation 66 snd find

f- N
=

(ah) = T 8" + (H + Qe (79)

e

It 1s seen from Ecuation 79 that & correlated error will be magnified by

T . - i

the fachor (§'+ &) which will he large if %»is small. A generalization of
: T

the srgusent shows that magnitication fectore (f% + @) occur in multizone

PRRSROEEE s

problems.

P 42
S My NS

1
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SOM® SIMPLE EXAMPLES
Bar Losing Heet

As a first exemple to illustrate the application of the method
of zones to aksteady state problem, we consider the case of a bar losing
heat along its length at a rate determined by & heat transfer coefficient
d. The ends of the bar are held at fixed temperatures of 0° and Tl. By

the method of zones the heat balance equation, as in Equation 38, is
% (12T, - 61) + DHOT, = O (80)

where A is the crogs sectional area of the bar
£ is the length of the bar

p 1s the perimeter of the bar.

Equation 80 may be solved immediately to give
6K'ATl

) [

(81)
m o 1oKA + pHAS

To compare this result with the exact result and the result obtained by
the nodal method, it is desirable to calculate the center temperature Tc.
Since the temperature of the zone is assumed to be parebolic, the center
temperature 1s given by the‘expression
£\2
‘- L -
67;m Tl ) 24 (S)

Cc

Aethur D Little Ine.
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The exact result is
PR
sinh *\
J— (84) "
sinh 5

By the nodal method the equation for the center temperature is

2KA OKA _
=T, + 5 (T, - Ty) + pHIT =0 (85)
whence
R (86)

C—u+(é)21

Some numerical results for ccmparison are given-in Teble I. One sees that

the method of zones gives quite good results when é is two or less, and

TABLE I
Tc/'l'l
— Method of Kodal
£/5 Exact Zones Method
1 0.436 0.443 0. 400
2 0.324 0.312 0.250 °
3 0.213 0.178 0.154

that the error of the nodal method is sbout five times that of the method

of zones in this range.

Arthue D.Uittle, Ine.
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Triangular Tube in Sunlight

Figure T shows a cross section of a long trianguler tube in
sunlight. We will set up the zone heat balance equations for three zones,
numbered 2, 4, and 6 in the diagram, and the joilning equations for the
cdges, numbered 1, 3, and 5, in order to illustrate the application of
the method to a multlzone problem. We consider a unit length of the tube

which 1s taken to be black both inside and out in the infrared.

The following equations describe the system:

K¢ K8,
72—- (6T6 - th - QTS) + 52_ (6T2 - th - 2T3) =0 (87)
K% ‘ ¥ 4 "
-3-5—(12’13 «-6’1‘ -613) + 20, 0T, = bye O Tg" = By 0T
az, .
- 0, 4, 8 cOs8, + M, —= =0 (88)
K8, KOy :
—-j—é— (6‘1‘2 - hm3 - eml) + 7: (6Tu o ufr3 - 2f1.-5) =0 (89)
K,b ‘
g L i "
7,4'(12“34 ~6'l‘3 -6’1‘5) +28) 0T - by 0T, - by 0T
ar),
- o) 8 cosd) + My —= = 0 (90)
KcB¢
K0y, 6
T (6f13,1L - htr - 2Ty )+ —— (61 - 1+'I‘5 ar ) = 0 (91)

r

Zrethur D, Uittle Inc.



-

Eii . S - aEe l!lD: AR GBS CIE OB 09 D 2 SN G LN SEE B &8 @&

%

3k
K8
66 o , , k4 4 L
-7-6- (12’1‘6 - 611 - 61'5) + 2 OTT = hyg 0Ty - by 0T,
dTg
+ M6 —--dt = 0 (92)

In these equations

8, is the thickness of zore i

Ki is the conductivity of zone i

is the width of zone 1

313 is the view area per unit length between zones i and j

G, is solar absorpbivity of zone i

s 1s the solar constant

6. is the angle of incidence of the sunlight on zone i

M, is thermal mass of zone 1

Tb, Th’ and T6 are the mean temperatures of zones 2, 4, and 6,
respectively

Tl, T3, and T5 are the temperétures of the vertices of thg

triangles as shown iﬁ Flgure 7

Equations 87, 89, and 91 are the joining equations; while Equations 88,

90, and 92 ere the zone heat balance equations. It will be observed that
8ix equations in six unknowns are produced so that the problem is properly
defined and soluble 1f the temperatures T2, Th’ and T6 are given initielly.

The initial values of temperatures Tl’ T3, and T. are found from Equations

5
87, 89, and 91 solved simultaneously. The six equations may now be inte-

grated numerically (without linearization of Tiu) as described earlier.

Avthur D Little, Ine,
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FIGURE 7.

CROSS SECTTION OF A TRIANGULAR TUBE IN SUNLIGHT
SHOWING NUMBERING OF FACES AND EDGES.

Avthur D.Hittle, Inc.

35



36
Cooling of & Slab

Congider an infinite slab of thickness £ thermelly insulated
over one face (at x = 0) and with the temperature of the other face (at
x = £) held at zero degrees. The inltisl tempersature of the slab is
taken to be Ti' {le shall derive the solution of this éransient problem
by the method of zones using only one zone and compare this result with

the exact answer.

To do the problem by the method of zones, let To be the temper-

ature of the boundary at x = 0 and Tm be the mean temperature of the sleb.

Then the adlabatic boundary condition is expressed by the equation

ér - kr =0 o (93)

The overall heat balance equation is

|

(127 - 6T ) + Cop '~ a%‘"" S (9k)

In order to investigate the effect ~f the use of & single zone on the

transient behavior of the temperature, we eliminate To and integrate to

obtain
.3kt
Je2
Tw= Ty e (95)
where

Avthur B Hittle Inc,
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} The exact answer for the temperature distrlbution is
| l _(en + )PPkt
| 2
! 4 %0 ()R (2n + L)mx )
| \I T(x,t) = =Ty I ==t cosiy e (96)
n=0
i
o ! The mean temperature ifﬁ_
i _(en + l)ewent
* 00 2
| L JEC R S g S he (97)
" 7 *n=0 (20 + 1)
g T
i Figure 8 shows plots of the exact and approximate values of Er-as functions
B &7 i
' of nt/la. The difference,-1§% between the two functlons 1s shown in
: i
Figure 9. It will be noted that the error is less than about 2% of '1'i for
i values of %— greater than 0.3. The large error at the beginning, approxi-

)

mately ll% of T,, is due to the fact that in the initial stages of the

i
transient the temperature distribution is very far from parabolic. In

order to obtain accurate results in the early stage, two or more zones

should %= used.

CRITERTIA FOR CHOICE OF ZONE SIZE

st
&

SN
L] L . L] o

After the heat balance equations have been written one still

enjoys freedom of cholce of the time interval and the integration param-

eter. However, no such freedom remelins in the cholce of the zone sizes.
If the zones are made too large, excessive error in the temperature dis-
tribution will result. On the other hand, if the zones are too small,

excesslve labor is required to set up and solve the problem. Therefore

ceviae wed

i Avthur D, Kittle, Ine,
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METHOD OF ZONES

FIGURE 8.

COMPARISON OF THE METHOD OF ZONES
CALCULATION WITH THE EXACT SOLUTION IN
THE PROBLEM OF THE COOLING OF A SLAB.
THE RATIO OF MEAN TEMPERATURE T, TO
INITTAL TEMPERATURE Ty IS PLOTTED
AGAINST wt/f£2 A DIMENSTONLESS VARIABLE
PROPORTIONAL TO TIME WHERE k IS THE
THERMAL DIFFUSIVITY AND 4 IS THE
THICKNESS OF THE SLAB.
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FIGURE 9. PLOT OF THE DIFFERENCE OF THE TWO GRAPHS OF FIGURE 8.
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it is vital to develop eriteria which'parmiﬁ one to choose zones which

are of the maxipun size consgistent with the tolerable errcr.

The. principle used 10 derive these criteria is that the zone
gize must be chosen so that the perebolic approximetion is valid at all
times of interest. An lmmediaste consequence of this prinéipie'is that if
the temperature distribution in & vegion is strongly S~sh&pe§5 the region
must be broken into at least two zones. For example; if a cylindrical
satellite 1s rotating about its axis in sunllght; e minlmum of three, and

preferably four, azimuthal zones must be used beceuse of the spproximately

slnusopldal dlstribution of temperature.

Many exact solutions to heat transfer problems consist of a
serles of exponentials and trigonometric functioné. In order to obtain
the maximum size of & zone; we calculate the interval over which the ex-
ponential or trigonometric function is well represented by & parabola.
For example, consider the vase of a semi-infinite rod extending from

= Q0 to x = oo and losing hest along its length. Suppose that the tem~
peratu?e at the origin is modulated sinuabidal}y wlth an amplitude To and
angulay frequency w. The d;fferghtial equation 18
- XA ..55..‘7» hoT + CpA a?“ (98)
ax .
where - -'Kﬁis tgg conducti?ity
',A'is the cross~sactional aree

h.is the heat trengfer coefficlent

QArthywe D Uistle, Ine,
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Ccp

When steady

where

1s the pexrimeter
ig the hest capacity per uvwnlt volume

1s the temperature relative to ambient.

state 1s reached the temperature ls

)

- ) amx
T=T e = cos(ws -5 )

1

2
\/\/&Kﬁ)ﬁ‘ £ (D + 2B

a2 —
WED? + @F - 2

e

Co

b1

(99)

(100)

(101)

The quantity & may be called the temperature decay length an?

A 1z the wavelength of the damped temperature weve in the rod. The zoneg

zlze may be of the crder of b to 35 or %, whichever is smallcoy, It will

be noted that 8 in less than Ak

For @ = O, the decay length 3 always govexns (because k= o)

antl 18 given by

- \B

{102)
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In case of a high frequency modulation
_ . I2x ' VS

The zone size should therefore be chosen to be about g%’]?’ that is, a

quarter vavelength.

Another criterion is obtained by examination of Figure 9, which
shows the error in a itransient problem. For an error in the mean tempers-

ture of less than about 2% of the total tempersture swing, sufficient time

must elapse so that

9;§£~ (th)

vhere £ is the size of the zone. In other words, if to is the earliest

time of interest, the zone size £ should be chosen so that

4= 1.8@ (105)

An additionel type of restriction on zone size has already been

glven in Inequallty 15. This 1s the conditiun that

o Tu o EE

e

over radlating surfaces. Condition 15 can be put in the simple form

4 << i—gﬁg—r (106)

a E

Avtlyue D Aistle Inc.
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NUMERICAL SOLUTION OF THE DIFRERENCE EGQHAIONS

While the modified Gauss-Seidel procedure used for solving the

difference Equations 60 is well known, it will be briefly described here

for the sake of completeness and also because the method has been found

to work well in practice on a large number of complicated examples.

In order to calculate Ti(t + h), iteration with an acceleration
factor is used. Thr values of Ti(t) are used as g starting aepproximation
to Ti(t + h)., Wew approximations are obtained successively by solving

the equations

W
foq * £14 Bt + B) + £, (PH(6 + k)" = 0 (107)

where £, =h }J: C:u (1 - a)TJ(t) + h J?i ciJ o 'I‘J(t + h)

+hZIA (1-a)o'rl*(t)+h Z A aoTl‘(t+h)
iJ J 1

3 VIR
t+h
- P, dt - M, Ti(t) (108)
t
£, =h Cyq &+ My (109)
£y =hA, Qo0 (110)

When the root Tg(t + h) has been found, the old value of Ti(t + h) is

replaced by

Avthur B Wittle, Inc.
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by

T,(t + h) +y [T*i*(t +h) - Tt + h)) (111)

and the next equation is set up and solved. The acceleration factor 7 is

gererally chosen to be about 1.6 for optimum results.

Convergence of the method is generally gcod unless two or more
temperatures are very tightly coupled to each other and weakly coupled to
surrounding temperatures. Thig situation is to he svoided by replacing

two such relatively tightly coupled temperatures by & single temperature.

CHECKING PROCEDURES

It 1s & laborious and tedious task to set up all of the
numerical coefficients used in the equatiocns describing the heat balance
and jolning conditions of meny zones in a complicated problem, so that
errors frequently creep in. Many of these errors caen be detected by
checks based on the principles of recilprocity and the conservation of
energy. In general, the rows and columns of the matrices of conductances
and view areas should add up to zero. This will be so if the equations
are written in full exactly as prescribed by the webthod of zones with all
dilagonal elements positive. While it would make no difference to the
final answer if varlous equetions were multiplied Ly different constants,
such manipulation wéuld maeke 1t impossible to chack the colunm sums.
Certain complications generally do arise, however. In the first place,

it frequently happens thaet certain areas of the arstem are radlating to

Fvthue D Listle, Ine,
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empty space, so that the view area for the radiation from empty space is

j omitted.

When any part of the system (e.g., 2 boundary) has a fixed, pre-

assigned temperature T, the equation for this temperature is simply

(112)

25
il
(@]

It will be seen that the conductances and view arcas of the rest of the
system to this part are omitted, but not conversely, so that non-zero
column sums will occur. As long as all the omitted conductances and areas

are known, however, the non-zero sums can be checked.

Non-zero column sums elso erise when circular zones, subdivided
3
‘ azimuthally, are present because the condition on the center temperature

-

is the regularity condition and not a flux condition. Here again, however,
‘ § the amount of the column sum can be predicted and thus the column can svill

be checked.

Another check that can be made is on the overall heat energy

balence of the entire system, Five terms enter the energy halance equation

t t 1,
.3 : b
| ;Mi Ti('b) = LM, Ti(O) + 5 P,dt -ZA O T, 4t - I ¢ T, at
a 1 1 i i 1
f 0 ) o

N (113)

Arthur D Witele Ine,



where M T,(t) is the energy stored at time ¢
) 1
M, Ti(O) is the initial stored energy

t
Zkfa Pi dt is the energy recelved

1
o

.t
% A1 0;/r Tih dt is the net energy lost by radiation
1 o

7

z Ci ’l‘i dt is the net energy lost by conduction,
i

In Equation 113 the quantities A1 and Ci are simply the areas and conduc-

tances omitted in the meitrices of coefficients. It 1s to be noted thet
the 1iategratiors of Ti and ‘I'i!+ should be carried out with the same inte-
gration parameter ¢ used for the integratioxn of the lndividual heat
balence equations, This check can be applied at any time t after the

start of the ealeulation.
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